THE PASSION PEOPLE

www.magura.com

5 bar (73 psi) min.
17 bar (247 psi) max.

sag ~ 25%

100%

TS RC

TS RL

TS RL & RCL²

TS R eLECT

LOCKOUT
OPEN
FIRM
LOCKOUT
OPEN

ON ⇔ OFF

LOCKOUT
OPEN

1 x

1
2
3
4

THE PASSION PEOPLE

www.magura.com
Welcome to the PASSION PEOPLE!

Your new mountain bike comes with the versatile, adjustable MAGURA TS rear shock.

Please read these user instructions carefully before you use your MAGURA product. Read and follow all the instructions in the manual provided by the manufacturer of your mountain bike.

The following instructions (SetUp) for adjusting your rear shock are basic and are designed to help you understand the process. The detailed instructions in the user instructions provided by the manufacturer of your mountain bike should be followed.

Remember that the MAGURA rear shock of your new mountain bike is designed and sized exclusively for its frame. Never install this rear shock on a different frame – we cannot guarantee its correct function and its safety in that case.

If you have purchased your MAGURA rear shock separately for tuning or retrofitting, please follow the included installation instructions.

Never overestimate your technical capabilities. Commission a specialist workshop for bicycles or an authorized MAGURA service centre with all installation and maintenance work. This is the only way to ensure that work is conducted in a professional manner.

WARNING

Failure to observe the instructions in these user instructions can lead to serious or fatal accidents.

Keep these user instructions for other users of your MAGURA product.

The type name (1) and variant (2) of your MAGURA rear shock can be found on the air canister [A].

Visit www.magura.com for more tips and information on your MAGURA product. You can also exchange experiences, ask questions and generally “talk shop” with many PASSION PEOPLE members on the MAGURA Forum.

We wish you great success and a great ride

Your MAGURA Team
Set Up – Negative Suspension Stroke (sag) [A]

1. The *sag* designates the distance by which your rear shock drops if you apply your own bodyweight to it; this gives you some initial feedback as to whether the air pressure setting is in the right range.

2. If your rear shock frequently bottoms out in spite of the correct setting of the negative suspension stroke (*sag*), the air volume must be reduced with the MAGURA rear shock spacer kit. This is generally the case if the rear triangle of your bicycle has highly degressive lever kinematics. The installation of the correct spacers increases the progression of the rear shock under the same air pressure, i.e. the last part of the suspension travel requires greater force.

 For more information see www.magura.com.

- Set the compression lever to the **OPEN** position [B].
- Slide the O-ring (3) on the piston forward.
- Mount your bike carefully – don’t bob up and down.
- Measure the distance between the rubber ring and the scraper.
 - *sag* > 25% – increase air pressure.
 - *sag* < 25% – reduce air pressure.

Adjusting the Suspension (Air Pressure) [A]

1. The air suspension on your MAGURA rear shock helps to compensate for uneven terrain and keeps your rear wheel in contact with the ground at all times.

 Insufficient air pressure causes a pronounced drop, frequent bottoming out and a spongy ride.

 Excessive air pressure reduces the maximum suspension travel and provokes a hard response from your rear shock.

 As a general rule, the higher your weight and speed, and the rougher the terrain, the higher the air pressure will need to be.

NOTICE

- Material damage due to severe bottoming out caused by insufficient air pressure.
 - Never use your rear shock if there is insufficient or no air pressure.

- Material damage due to excessive air pressure.
 - Never exceed the maximum permissible air pressure of 17 bar (247 psi).

- Air leaking due to incorrect fitting of the valve cover.
 - Never use the rear shock without a valve cover (4).
 - Always keep the valve cover seals clean.
 - Always firmly close the valve cover.

- Set damping (compression damper) to **OPEN** [B].
- Adjust the air pressure if necessary – use a suitable pump (e.g. MAGURA suspension pump).
Set-Up – Damping (Rebound Damper)

1. The rebound damping defines the speed at which your rear shock decompresses.
 - A high rebound damping setting (+) causes slower decompression thus reducing ground contact and possibly impairing traction and control.
 - Lower rebound damping setting (-) causes faster decompression which causes the rear wheel to jump and can thus also impair traction and control.
 - As a general rule, the higher your bodyweight and speed, and the rougher the terrain, the higher the rebound damping will need to be.

 - **Set damping (compression damper) to OPEN.**

 - **First, turn the red adjusting dial counter-clockwise (-) to the stop.**

 - **Turn the red adjusting dial 4–5 clicks clockwise (+).**
 - This sets the rebound damping to an average value.
 - Gradually increase (+) the rebound damping by 1 click – if the rear triangle rebounds more than 1 or 2 times.
 - Gradually reduce (-) the rebound damping by 1 click – if your rear shock decompresses too slowly.

Set-Up – Damping (Compression Damper)

1. You can set the damping of the compression damper of your rear shock to suit your own needs with the compression lever, with the RCL⁲ remote control lever or with the eLECT remote control.

 - **OPEN** – rear shock is fully active.
 - Sensitivity (compression behaviour) fully present.

 - **FIRM** (TS RC) – rear shock is less active.
 - This favours an aggressive riding style.
 - Sensitivity (compression behaviour) is reduced.
 - Bottoming behaviour is reduced.
 - Feedback from the ground is greater.

 - **LOCKOUT** (TS RL & TS R eLECT) – rear shock is very hard on compression.
 - Rear shock is completely blocked.
 - Uphill riding is favoured.

 - Heavy loads are also absorbed by your rear shock in LOCKOUT mode (blow-off) to prevent damage to the damping system.

Maintenance

Warning

Danger of accident due to pressurised parts.
- Never unscrew the screw plug (5) at the bottom end of the piston.

Notice

Loss of oil and irreparable damage to the damping system.
- Never remove the rear shock screws.

Notice

Damage to material due to faulty installation work.
- The rechargeable battery of the TS R eLECT rear shock must exclusively be exchanged directly at MAGURA.

Notice – Environment

Never dispose of batteries, rechargeable batteries and electronic devices with normal domestic waste; instead, always take them to a specified collecting facility.
AFTER EACH TRIP
- Clean the piston with a clean dry cloth.

NOTICE

Increased seal wear.
- Do not apply lubricants to the piston.

Perform the following maintenance steps more frequently if you use your bicycle in extreme conditions (rain, dirt, high mileage, etc.).

NOTICE

Corrosion and material damage.
- Never use a pressure or steam cleaner to clean your rear shock.

- Clean the rear shock with water, detergent and a brush.
- Set damping (compression damper) to OPEN [B].
- Compress the rear shock several times.
- Make sure that the rear shock responds perfectly and with sufficient sensitivity.
- Check the air pressure.
- Check the tension and ease of operation of the RCL² inner cable – make sure that the corresponding dial immediately responds to your actuating the RCL² or adjust it if necessary.

MAGURA rear shocks have internal permanent lubrication and excellent sealing material so that very little maintenance work is required for the internal components. Once a year, you will need to have your MAGURA rear shock serviced in a professional bicycle workshop or by an authorised MAGURA service centre. If you are a frequent user, also consider the fact that this exposes your rear shock to more wear and thus requires more frequent maintenance intervals and checks.

TENSIONING RCL² INNER CABLE [F]
- Set the RCL² to the OPEN position [B].
- Loosen the clamping screw (6) by 2–3 turns.
- Tension inner cable (7).
- Make sure that the outer sleeve of the Bowden cable is tightly seated in the stops on the RCL² and rear shock.
- Tighten clamping screw to a tightening torque of max. 2 N·m (18 lbf·in).

DECLARATION OF CONFORMITY
We, MAGURA GmbH & Co. KG, declare that the eLECT system for electronic control of compression stage damping is in accordance with the requirements of the EU Directives 1999/5/EC (radio equipment and telecommunications terminal equipment) as well as 2004/108/EC (electromagnetic compatibility).

The detailed original declaration of conformity (also USA, Canada, Japan and Australia/New Zealand) can be requested at www.magura.com
 Unsere weltweiten Handelspartner und Service Center finden Sie unter www.magura.com
 Check out our worldwide partners and service centers at www.magura.com

Deutschland
MAGURA Bike Parts GmbH & Co. KG
Eckisstraße 6
D-72574 Bad Urach

phone +49 71 25 96 94 6-0
fax +49 71 25 96 94 6-17
info@magura.de

Asia
MAGURA Asia Limited Co.
No. 9, Industrial Park, 10th Road
Taichung City
40755 Taichung City, Taiwan
phone +886 4 2359 8555
fax +886 4 2359 99 10
info@magura.com.tw

USA
MAGURA USA
724 West Clem
62450 Olney, Illinois

phone +1 618 395-2200
fax +1 618 395-4711
magura@maguraua.com

© MAGURA 2014
All rights reserved
Printed in Germany
2 600 139 - 08-2014
Umschlag & Inhalt:
www.technische-redaktion.de